

Metabolism of Biomolecules - Continuous Assessment I

Questions Responses 26

Total points: 60

Section 1 of 6

Continuous Assessment 1

Course Code: BIO.III.E-2

Course Name: Metabolism of Biomolecules

Date: 06 October 2020 Time: 9.00 am to 10.10 am

Mode: Multiple Choice Questions (60 MCQs for 0.5 mks each)

- *All questions are Compulsory
- *Each question is a multiple-choice question with four answer choices.
- *Read each question carefully and choose the ONE correct answer.

This form is automatically collecting emails for Parvatibai Chowgule College of Arts and Science users. Change settings

1. Which among the fo	llowing are ketop	pentoses: a) Ribose;	b) Xylulose; c) Eryt	throse; d) Ribulose	*	*
a and c						
ob and d						
c and d						
ob and c						
(+)	Ð	Тт		•	8	

Z. The dephosphoryland	on ot fructose	i,o - disphosphate is	catalyzea by Truc	rose 1,6 - bisphospharase,	* *
What catalyzes the rev					
Phospho hexose	isomerase				
Hexokinase					
O Honorumass					
O Pentose phosph	ate kinase				
Phosphofructoki	nase				
3. The action of the en	zyme aldolase y	ields *			*
-					
Two Aldoses					
Two Ketoses					
One Aldose and	one ketose				
None of the Abo	ve				
4. Substrate level phos	ohorylation In t	he tri Carboxylic aci	d cycle results in	the addition of phosphate	* *
group to nucleoside of	the which of the	following base			
Guanine					
O Guarrino					
Adenine					
Thymine					
Uracil					
3.43					
(<u> </u>				.	*
5. The activity that lead	ds to the final b	reak of the $lpha$ - 1-6 li	nkage in glycogen	is ^	*
Glucotransferase	e activity				
Glucomutase ac	tivity				
(+)	₽	Тт		P	8
			_		_

Glucophosph	orylase activity					
Phosphate. In a hear The NADH is The Electron The NADH tra		ectron pair made and to Complex I a part of some or onto FADH2	vailable to the ETC	of Glyceraldehyde-3-	*	*
2 Cytosolic N 4 Cytosolic N	o molecules of gluc ADH, 16 Mitochor ADH, 8 Mitochono ADH, 12 Mitochor ADH, 12 Mitochor	ndrial NADH & 4 M Irial NADH & 2 Mi ndrial NADH & 4 M	litochondrial FAD tochondrial FADH litochondrial FAD	H2 2 H2		*
8. In the non oxidation Phosphate would be 4 3 2 5	•	• •	•	ecules of Ribose -5 - e	*	*
(Ð	Тт		Þ	8	

7/2021	Metabolism of Biomolecules - Continuous Assessment I - Google Forms	
Matrix to Intermembrane	Space	
Intermembrane Space to I	Matrix	
Intermembrane Space to 0	Cytosol	
Matrix to Cytosol		
10. Which of the following statem	nents is true for Glycolysis and Gluconeogenesis? *	*
Both are anabolic		
Both are catabolic		
Glycolysis is anabolic and	d Gluconeogenesis is catabolic	
Gluconeogenesis is anabo	olic and Glycolysis is catabolic	
After section 1 Continue to ne	ext section •	
Section 2 of 6		
Contd	×	•
Description (optional)		
11. Which of the following statem	nents are not true about α - Ketoglutarate. *	*
α - Ketoglutarate can serv	ve as a precursor to form Amino acids.	
α - Ketoglutarate can serv	ve as a precursor for Gluconeogenesis.	

After section 1	Continue to next sec	tion	•			
Section 2 of 6						
Contd	•••				×	•
Description (op	otional)					
11. Which of the	following statements a	re not true about (α - Ketoglutarate. *			*
α - Ketogl	utarate can serve as a	precursor to for	m Amino acids.			
<u>α</u> - Ketogl	utarate can serve as a	precursor for Gl	uconeogenesis.			
α - Ketogl	utarate can be aminat	ed to form Gluta	mate.			
α - Ketogl	utarate is incapable o	f undergoing an	oxidation reaction			
⊕	\Box	Тт		Þ		
os://docs.google.co	m/forms/d/1QhfEES7spj1k	HHGUixfJ5o2K4GTk2	!AvjKysWovUAprgU/edit	t		4/19

23/07/2021

12. For the formation of One ATP Molecule four protons need to pass through the ATP Synthase pump. How * many ATP molecules will formed per FADH2 molecule entering the electron transport chain.
② 2.5 ATP
○ 1.5 ATP
O 2 ATP
O 6 ATP
13. In the malate-aspartate shuttle what is sent in the reverse direction to enable the transport of
○ Malate
Glutamate
Oxaloacetate
O α- Ketoglutarate
14. Which enzyme of the TCA cycle serves as one of the complexes of the Electron transport Chain? *
NADH Dehydrogenase
Succinate Dehydrogenase
FADH2 Dehydrogenase
Succinyl Dehydrogenase
15. Which of the following is not true about Isocitrate with respect to plant seeds? *
O Isocitrate can undergo decarboxylation to form $oldsymbol{lpha}$ - Ketoglutarate
Isocitrate can undergo decarboxylation to form a - Ketoglutarate Isocitrate can undergo lysis to form Glyoxylate and Succinate

O Isocitrate cannot be Isomerized to form Citrate	
 16. Thiamine pyrophosphate is used as a cofactor for the reaction of * Decarboxylation of Pyruvate Reduction of Pyruvation Oxidation of Oxaloacete Formation of α - Ketoglutarate 	*
17. The major source of the energy for the brain is * Fatty Acids Amino acids Nucleic Acids Glucose	*
18. In the absence of Glycogen fragment, Glycogenin serves as the Glucosyl Unit Acceptor. On which residue serves as the site for glucosyl attachement? Tryptophan Tyrosine Alanine Cysteine	* *
+ T	*

Simple precu	rsors build up lar	ger molecules				
ATP is not uti	lized					
Reducing equ	ivalents are not	formed				
It is described	d as diverging.					
20. Which Nucleotid	e plays a key role	in Glycogenesis? *				*
Adenosine tri	phosphate					
Cytidine triph	osphate					
Uridine tripho	sphate					
Thymidine tri	ohosphate					
After section 2 Co	ontinue to next se	ection	•			
Contd					×	•
Description (optio	nal)					
any, should this CO The three fun ATP synthase	have on oxidative ctional complexe	d inhibits Complex IV phosphorylation? es will still operate mping protons to m		ansport chain. What (effect, if *	*
(₽	Тт		Þ	8	

22. Which of the following is true about Ribulose *
It is a ketohexose
It is a C-3 epimer of Xylulose
It is a C-3 epimer of Ribose
It is a isomer of Erythrose
23. The following is the sum of three steps in the citric acid cycle. A + B + FAD + H 2 O \rightarrow C + FADH 2 + * NADH . Choose the lettered answer that corresponds to the missing "A", "B", and "C" in the equation.
A) Succinate; B) NAD+; C) Oxaloacetate
B) Fumarate; B) NAD+; C) Oxaloacetate
C) Succinate; B) NAD+; C) Malate
D) Fumarate; B) NAD+; C) Malate
24. Which of the following is an aromatic amino acid? *
Thymine
Tyrosine
Histidine
Proline
25. The mobile components of the ETC are *
○ FeS Clusters
⊕

NADH Dehydrogenase	_
Cytochrome C Oxidase	
26. Which complex of the ETC doesn't serve as a proton pump? *	*
NADH Dehydrogenase	
FADH2 Dehydrogenase	
Succinyl Dehydrogenase	
Succinate Dehydrogenase	
27. Cyanide is a poison that inhibits the electron transport chain by creating a strong and stable bond with Fe-Cu center in cytochrome C oxidase (complex IV). The following statements are made about the immediate consequences. a) Prevent reduction of Oxygen; b) Prevent reduction of NADH; c) Prevent Oxidation of Oxygen; d) Prevent oxidation of NADH. Which of the statements are correct?	*
a and b are corect	
a and c are correct	
a, b and c are correct	
All are incorrect	
28. The Subunit of ATP Synthase that can bind ADP and Pi are *	*
α - Subunit	
α and β Subunit	
O β - Subunit	
All of the above	

29. Which part of the ATP	formation process	requires the rota	tion of the proton (channel? *		*
ATP Binding						
ATP Formation						
ATP Release						
ATP and Pi Binding	I					
30. How many subunit of t	he complex I of ET	C encoded by mito	chondrial genes? *			*
8 Subunits						
5 Subunits						
7 Subunits						
6 Subunits						
After section 3 Continu	e to next section		*			
Section 4 of 6						
Contd					×	•
Description (optional)						
31. The function of the $oldsymbol{\gamma}$	Subunit of the ATP	^o Synthase is *				*
Helps in positionin	ng both the region	ıs (F1 and Fo)				
Binding ATP						
Formation of ATP						
(+)	3	Тт	_	▶		

32. Which of the f	ollowing cannot con	tribute towards glu	uconeogenesis in live	r? *	
Palmitate	-	-	·		
Pyruvate					
Alanine					
Glycerol					
33. Copper center	rs are found in which	of the Complexes	of ETC? *		
Complex I					
Complex II					
Complex III					
Complex IV					
34. In the redox rewhich is reduced.?		D+> Oxaloace	tate + NADH. Which o	component is oxidised o	and *
Malate is o	kidised and NAD+ i	is reduced			
Malate is re	duced and Oxaloa	cetate is Oxidise	d		
NADH is red	duced and Malate i	is Oxidised			
NADH and (Oxaloacetate are o	xidised			
35. For the forma	tion of one malacula	of water at the er	nd of the electron tr	ansport chain, a total c	of how *
	pumped in the inter				

Tτ

23/07/2021

39. Which of the following statements is true with respect to Isomers and epimers *		*
Isomers are epimers are the same thing		
All isomers are epimers but all epimers are not isomers		
Isomers and epimers are completely two different conepts		
All epimers are isomers but all isomers are not epimers		
40. The electron transport chain is located in *		*
Outer Mitochondrial membrane		
O Inner Mitochondrial Membrane		
O Intermembrane Space		
○ Matrix		
After section 4 Continue to next section ▼		
Section 5 of 6		
Contd	×	•
Description (optional)		
MA Which of the fellowing is make main of enimous?*		*
41. Which of the following is not a pair of epimers? * Xylulose - Ribulose		
Glucose - Galactose		
Glucose - Mannose		
⊕ → T _T →		

42. The action of isomerase enzyme on Glyceraldehyde 3 phosphate will yield*
Glycerol 3 Phosphate
3 Phosphoglycerate
Oi hydroxyacteone phosphate
Oi hydroxy glycerol phosphate
43. The complex of the ETC that results in the formation of metabolic water is made up of how many
<u> </u>
40
<u> </u>
4
44. The Catalytic subunit of the ATP Synthase is located in the *
Inner Mitochondrial Membrane
Outer Mitochondrial Membrane
O Matrix
Intermembrane Space
45. In the glyoxylate pathway the Isocitrate lyase yields *
Succinate and Fumarate
⊕ 1 T _T □ □ □

Glyoxylate and Succinate
Glyoxylate and Malate
46. According to the net reaction of Glycolysis, which of the following correctly lists the outcomes of the * *
pathway?
4 ATP, 2 NADH, 2 Pyruvate
2 ATP, 2 NADH, 2 Pyruvate
2 ATP, 4 NADH, 2 Pyruvate
2 ATP, 2 NADH, 1 Pyruvate
47. In absence of oxygen pyruvate will be converted to *
Acetyl CoA
Glyoxylate
Lactate
Glucose
40 1 N: h - C H - C H - :
48. Which of the following product is not a result of a decarboxylation reaction? *
Acetyl CoA
α- Ketoglutarate
6 - Phosphogluconate
Succinate

23/07/2021	Metabolism	of Biomolecules	- Continuous Asses	ssment I - Google Forms		
Brain Cells						
Heart Cells						
C Kidney Cells						
C Liver Cells						
50. The reducing equival	ent in the shuttle ope	erating in the s	keletal muscle ce	ll is *		*
Oihydroxy acetone	e phosphate					
Glycerol 3 Phosph	nate					
Oxaloacetate						
Malate						
After section 5 Contin	ue to next section		~			
Section 6 of 6						
Contd					×	•
Description (optional)						
51. Which vitamin deficie	ncy can cause an inc	rease in the py	ruvate and lactate	content? *		*
Niacin	·	, ,				
Pyridoxine						
Thiamine						
Ascorbic Acid						
(₽	Ττ		P		

52. The TCA Cycle does not occur in *	*
Myocytes	
Hepatocytes	
Nerve cells	
Erythrocytes	
53. Upon the exhaustion of Glycogen reserves after long hours of fasting which of the following pathway *will be set in motion to ensure brain activity?	*
Coversion of Oxaloacete to Glucose	
Conversion of Pyruvate to Glucose	
Conversion of Glycerol to Glucose	
All of the above could take place	
54. Which of the following are major sites for glycogen storage? *	*
Adipose tissue	
Bones	
Muscle and liver	
Kidney and liver	
55. The conversion of Glucose -6- Phosphate to Fructose -6- Phosphate is an example of which kind of	*
Epimerization	
Januariantian	

Phosphorylation
None of the Above
56. The complex that aids in the trasnfer of electron between two mobile components of ETC is *
Otytochrome c oxidase
Cytochrome c
Cyctochrome Bc1
Ubiquinone
57. Formation of which of the products yields NADPH? *
Ribulose 5 phosphate
Oxaloacetate
Malate
Acetyl CoA
58. The reaction catalyzed by the enzyme Phosphoglucomutase is *
3 - Phosphoglycerate to 2 - Phosphoglycerate
2 - Phosphoglycerate to 3 - Phosphoglycerate
Glucose -1- Phosphate to Glucose -6 - Phosphate
Glucose -6- Phosphate to Glucose

23/07/2021	Metabolism of Biomolecules - Continuous Assessment I - Google Forms
02	
O4	
O1	
O 00	
60. Which among the	following is not a monosacharide *
Mannose	
Galactose	
Sucrose	
Fructose	